Large Area Sputtering Solutions for Stationary Substrate Applications

By: R Newcomb

Angstrom Sciences, Inc.

Presentation

- Review software options which can be used for thin film deposition profile modeling
- Present modeling and applied results for thin film deposition profiles from a rotating cylindrical magnetron
- Overview of tools used and results obtained to uniformly deposit a thin film on a stationary substrate with multiple cylindrical magnetrons

Software Options

• FEA tools – Developing a magnetic configuration

COMSOL

Spreadsheets – Developing models and plotting

- Programming predicting results of variable configurations
 - Use VBA or macros from spreadsheets
 - Favorite programming language

Finite Element Software – FEMM

- Small steps = Simple models
- Our model assumes all flux is from a point source located on the target surface ...
- Magnet geometries, logistics, field intensities

Finite Element Software – FEMM

- Balanced Peak Intensities -
- Peak located at +/- 30 deg. ✓
- "Point" located at +/- 15 deg. ✓

• Build the tool, build the model, compare

- Single cylindrical magnetron, 3mT, argon, metal ...
- Generate deposition profile to be used as the "target" for the modeling

• Build the tool, build the model, compare

- Create model, and solve for 1 side of racetrack
- Add the 2nd side
- Compare to test data

Repeat process with different parameters

(20d. Magnets, 120 mm Target-Substrate)

Modeling for Multiple Deposition Sources

- Use equations gained from previous work
- Use variables available
 - power
 - target spacing
 - # targets as variables

• Test Applied v. Model for multi-cylindrical

Summary

- Simplistic and economical approaches to modeling deposition flux can be used under a controlled set of parameters to predict sputtered film uniformity.
- Rotating cylindrical magnetrons have several degrees of freedom to enable uniform coatings on static substrates, the most important being magnet angle
- The modeled uniformities achieve good agreement with measured results within a +/-1.5% range across a substrate width.

Angstrom Sciences, Inc.